RSC Adv. 2021 Jun 22;11(36):22025-22033. doi: 10.1039/d1ra03412j. eCollection 2021 Jun 21.

ABSTRACT

Hemp wastes (stems and branches), fractionated after hemp flower extraction for the production of cannabidiol oil, were utilized as a potentially renewable resource for the sugar flatform process. Hydrolysis of cellulose from the acid pretreated hemp biomass using a commercial enzyme was tested and evaluated for its chemical composition, morphological change, and sugar recovery. Acid pretreated hemp stems and branches, containing 1% glucan (w/v) solids, were hydrolyzed for 72 h using 25 mg enzyme protein per g glucan. A 54% glucose conversion was achieved from the treated branches versus a 71% yield from the treated stems. Raw branches and stems yielded 35% and 38% glucose, respectively. Further tests with a lignin-blocking additive (e.g. bovine serum albumin) resulted in a 72% glucose yield increase for stem hydrolysis using 10 mg enzyme protein per g glucan. While pretreatment promotes amorphous hemicellulose decrease and cellulose decomposition, it causes enzyme inhibition/deactivation due to potential inhibitors (phenols and lignin-derived compounds). This study confirms the addition of non-catalytic proteins enhances the cellulose conversion by avoiding non-productive binding of enzymes to the lignin and lignin-derived molecules, with lignin content determining the degree of inhibition and conversion efficiency.

PMID:35480814 | PMC:PMC9034124 | DOI:10.1039/d1ra03412j


Source: ncbi

Partage le savoir
Categories: Medical

error: Content is protected !!